Building ML Workflows with tidymodels

A comprehensive guide to creating reproducible machine learning workflows using the tidymodels ecosystem in R.

RMachine Learningtidymodels

Introduction

tidymodels provides a consistent interface for machine learning workflows in R, making it easier to build, tune, and evaluate models.

Building a Workflow

R
library(tidymodels)

# Define model
rf_spec <- rand_forest(trees = 1000) %>%
  set_engine("ranger") %>%
  set_mode("classification")

# Create workflow
rf_workflow <- workflow() %>%
  add_recipe(recipe_spec) %>%
  add_model(rf_spec)

# Fit and evaluate
rf_fit <- rf_workflow %>%
  fit(data = training_data)

Model Evaluation

Learn how to assess model performance using tidymodels' evaluation metrics and visualization tools.

Resources